annual report 1997
Headquartered in Plymouth, Michigan, and Hamburg, Germany, ROFIN-SINAR Technologies, Inc. designs, develops, engineers, and manufactures industrial laser products for cutting, welding and marking a wide range of materials. With production facilities in the US, Germany and Japan, ROFIN-SINAR is one of the world’s leading designers and manufacturers of industrial lasers, with more than 5000 laser units installed worldwide serving more than 1500 customers.

Board of directors:
Ralph Reins,
Hinrich Martinen,
William R. Hoover,
Gary Willis,
Dr. Peter Wirth,
Günther Braun
Financial Highlights

(FY ended September 30)

Results of operations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net sales</td>
<td>$ 69,217</td>
<td>$ 92,466</td>
<td>$115,903</td>
<td>$129,393</td>
</tr>
<tr>
<td>Gross profit</td>
<td>$ 22,224</td>
<td>$ 35,304</td>
<td>$ 43,807</td>
<td>$ 46,411</td>
</tr>
<tr>
<td>Income (loss) from operations</td>
<td>$(1,669)</td>
<td>$ 7,912</td>
<td>$ 13,226</td>
<td>$ 13,233</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$(1,694)</td>
<td>$ 3,213</td>
<td>$ 7,288</td>
<td>$ 8,954</td>
</tr>
<tr>
<td>Net income per common share (based on weighted average shares outstanding)</td>
<td>N/A</td>
<td>0.37</td>
<td>0.84</td>
<td>0.77</td>
</tr>
<tr>
<td>Number of employees (per Sept. 30)</td>
<td>376</td>
<td>407</td>
<td>453</td>
<td>500</td>
</tr>
<tr>
<td>Sales per employee</td>
<td>$0.184</td>
<td>$0.227</td>
<td>$0.256</td>
<td>$0.259</td>
</tr>
</tbody>
</table>

Balance sheet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total assets</td>
<td>$ 76,667</td>
<td>$ 90,995</td>
<td>$133,147</td>
<td>$132,189</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>$ 46,084</td>
<td>$ 51,322</td>
<td>$ 55,147</td>
<td>$ 50,264</td>
</tr>
<tr>
<td>Stockholders' equity</td>
<td>$ 30,583</td>
<td>$ 39,673</td>
<td>$ 78,000</td>
<td>$ 81,925</td>
</tr>
</tbody>
</table>

Net sales

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net sales</td>
<td>$69,217</td>
<td>$92,466</td>
<td>$115,903</td>
<td>$129,393</td>
</tr>
</tbody>
</table>

Net income (loss)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net income</td>
<td>$(1,694)</td>
<td>$3,213</td>
<td>$7,288</td>
<td>$8,954</td>
</tr>
</tbody>
</table>

(in thousands, except per share data and employees)
September 30th marked the end of ROFIN-SINAR’s first year as a publicly traded company on the NASDAQ National Market System. Operationally, it was an eventful year during which we set out to seize all of the opportunities available to a public company, and translate those opportunities into solid results for our employees and shareholders.

It was also a busy year organizationally with additional reporting and accounting requirements. On the strategic level, too, major progress was achieved as we acquired 80% of DILAS Diodenlaser GmbH, a global leader in producing high power diode lasers. Keeping these challenges in mind, we are particularly pleased to announce that fiscal 1997 sales totaled a record $129.4 million, with net income growing to $9.0 million and laser shipments surpassing 900 units for the first time. Fiscal 1997 was marked by the achievement of several goals in manufacturing and research and development as well. With both of our operations in Günding and Plymouth achieving ISO 9001 certification, all of our main manufacturing facilities are now ISO certified. Within R&D, ROFIN-SINAR made significant progress in developing new products and increasing the capability of our slab laser technology. Throughout the next several years, ROFIN-SINAR will continue to introduce new products which solidify our technical lead in the laser industry while continuing to increase our global market share.

Consolidating worldwide numbers and reporting our results under US GAAP on a quarterly basis was a new challenge for us and we hope that the increased disclosure aids in the analysis of ROFIN-SINAR. Our revenues increased by 12% over fiscal 1996 to $129.4 million and our net income amounted to $9.0 million (+23%), with earnings per share of $0.77. Geographically, sales in North America grew 13% to $44.9 million while sales in Europe and Asia grew 11% to $84.5 million. With 65% of our sales invoiced in Europe and Asia, the continuous strengthening of the US dollar against these currencies had a significant negative impact on the figures reported above. On a constant exchange rate basis, sales would have totaled $140 million and net income $9.6 million resulting in growth rates of approximately 21%, which is more in line with the numbers achieved in prior years.

In fiscal 1997 our operating activities generated $18.2 million cash, or $1.57 per share, leaving us with cash, cash equivalents and short term investments of $40.7 million. This strong cash flow was mainly achieved through net income, a 16% inventory reduction and a 15% decrease in accounts receivable.

Our short term debt of $18.6 million is financed in countries with low interest rates such as Germany and Japan, while our cash investment is done in the US, where interest rates are higher. By paying the income from our German operations as a dividend to the US holding company and by using tax loss carry forwards in Japan, we were able to lower our average tax rate for the year to 39%.
We increased shipments of total laser units by 35% in fiscal 1997, with more than 900 lasers delivered to our customers. The sales split between the two business units remained at 72% for cutting and welding applications and 28% for marking and micromachining.

The first two quarters of fiscal 1997 were highlighted by strong sales to the automotive industry, including delivery of a substantial number of laser welding systems to an airbag manufacturer opening a new European production facility.

The semiconductor and electronics industry remained weak in this period, but the success of our newly developed microwelder for dental components compensated for this temporary downturn. During the second half of the year the semiconductor industry recovered, returning the industry sales split to the same levels of the prior year.

The automotive industry accounted for 29% of 1997 sales (1996: 27%), machine tool manufacturers for 28% (1996: 31%), and semiconductor and electronics for 14% (1996: 15%). The balance of sales of 29% (1996: 27%) was split among a wide variety of industries, from aircraft to consumer goods manufacturers. Service, spare parts and training accounted for 23% of total revenues in 1997. 1997 year end backlog amounted to $29.1 million and contains minimum service and spare parts revenues. Due to the strengthening of the US dollar, our backlog was 19% lower compared to the prior year, where a substantial multiple unit order pushed the backlog to above average levels.
Cutting & Welding

At the Hamburg facility we increased our Slab laser shipments by nearly 80%. This was achieved without affecting the sales of our fast-axial flow SM laser model, which also showed a healthy 20% increase. Production of high power solid state lasers and of cross flow CO$_2$ lasers stayed constant at a high level. Our Plymouth development group was able to ramp up the output power of our cross flow CO$_2$ laser to 8 kWatt, a model which was successfully introduced during a major European exhibition in September 1997. The first orders have already been booked and the higher available output power will further strengthen our position in the welding market.

Through continued research, we were able to further improve the beam characteristics of our Slab laser design. Due to the availability of thin diamond material with optical quality we were able to abandon the Zinc Selenide optics conventionally used in CO$_2$ laser designs. This feature, which is currently exclusively used by ROFIN-SINAR, creates constant laser beam characteristics independent from the chosen output power. As a result, cutting quality is further improved. Production of this second generation Slab laser is scheduled to start in December 1997.

Our research program with the Fraunhofer Laser Institute in Aachen produced the first prototype diode pumped Nd:YAG laser head with output power in the one kilowatt range. This development activity will continue through 1999 and will be strengthened by the recent purchase of DILAS.

Our US operation also signed an agreement with the Fraunhofer Institute of Dresden to actively pursue new welding and surface treatment applications in the US market. This institute has in-depth knowledge in material science and has developed a novel laser welding method for high carbon steels which combines laser with induction preheating in an automated process.

Marking

At our marking headquarters in Günding we further increased our production space. This enabled us to substantially increase our throughput and handle the high demand for microwelders, a new product introduced to the market in 1997.

In December 1996 at the Semicon Show in Tokyo the first small size diode pumped laser markers were successfully introduced. Our R&D department finished the development of the first higher power diode pumped laser marker, which provides output power in excess of 50 Watts and uses pump modules manufactured by DILAS. This laser will be ready for marketing in fiscal year 1998.

Diode pumped solid state lasers are an important step in the development of laser technology and have great advantages, particularly for the semiconductor industry where short equipment downtime and low maintenance requirements are necessary.

During the laser exhibition in Munich we introduced our new S-LINE marker, a new design based on our well known POWER LINE product. This unit is designed to meet the requirements of a market segment where “state-of-the-art” applications expertise is not required.
Diode lasers

Through our acquisition of DILAS, we added new technology and new products to our portfolio. In addition to pumping solid state lasers, laser diodes can be used for soldering, welding plastics and thin sheet metal, and for surface treatment such as hardening or cladding. Besides these material processing applications, it is our goal to deliver diode lasers into new markets such as medical or instrumentation, which will be relatively new areas for ROFIN-SINAR, building on DILAS’ experience in these markets.

Future Outlook

In fiscal 1998 we will build on the record performance of this past year and continue to develop new and innovative technologies and products that secure and increase our position in the laser market. Specifically, we will focus on further increasing our Slab laser sales and finding new applications for existing products. We are also excited about the prospects for our new diode pumped laser marker which gives us a strong and unmatched competitive position for marking applications in the semiconductor business. As always, supporting our customers, optimizing our performance and increasing the value to our shareholders will be the focus of our efforts.

Sincerely,

Peter Wirth
President and Chief Executive Officer

Group Structure

ROFIN-SINAR Technologies Inc.
Plymouth/Hamburg

ROFIN-SINAR Laser GmbH
Hamburg

ROFIN-SINAR, Inc.
Plymouth, USA

DILAS Diodenlaser GmbH
Mainz

Marking Division
Munich

Marking Division
Tempe

ROFIN-SINAR France S.A.
Paris, France

ROFIN-SINAR Italiana S.r.l.
Milan, Italy

ROFIN-MARUBENI Laser Corp*
Atsugi City, Japan

* Joint Venture with Marubeni and Nippei Toyama
Nearly 40 years ago, Theodore Maiman invented the first laser — a ruby laser. Since that beginning, the use of laser technology has continued to be an impressive and successful story. From medical applications, research and metrology to telecommunications, lasers have become a part of everyday life. One of the areas that lasers have made a significant impact is in industrial materials processing — primarily cutting, welding and marking.

Dr. Peter Wirth, CEO and Chairman of the Board of ROFIN-SINAR Technologies, Inc.

“Fiscal ’97 was an outstanding year for us with record sales and production.”

The Hamburg facility, with 111 thousand square feet of manufacturing floor space and over 200 employees, handles sales, service and applications support for cutting and welding products for the European and Far East markets.
Material processing with high-power lasers began nearly 20 years ago and was developed within a US government program. The knowledge gained from those early years led to the development of laser technology that would eventually play a significant part in industrial applications. ROFIN-SINAR, founded in 1975 in Hamburg, Germany, played a key role in the development of lasers for industrial material processing applications. Very early, the company recognized the potential in the material processing market and developed its own CO₂ laser in the 500 Watt power output range. The first production units, shipped in 1982, were of fast axial flow design – a technology still most commonly used for industrial laser processing. Today, ROFIN-SINAR’s SM Series is still based on that initial design, but power ranges have substantially increased. The technology has also been enhanced with the revolutionary new design of the diffusion-cooled CO₂ Slab laser.

CO₂ lasers have become well-accepted tools for cutting in the manufacturing industry. The ability to achieve high output power and the flexibility to cut various shapes, materials and thickness are the key reasons lasers have had an impact in the sheet metal market – both in flat and three-dimensional cutting. Besides the metal market, lasers are used to cut die boards for the packaging industry and textile material for air bags and filters. The majority of ROFIN-SINAR’s cutting lasers is sold to machine tool companies who integrate the laser into a turnkey system for component manufacturing. The two primary types of CO₂ lasers used for cutting are the fast axial flow SM Series and the diffusion-cooled Slab series. The Slab lasers are characterized by favorable low running and service costs together with an excellent beam quality. The superior beam quality produces a smaller focus beam resulting in higher cutting speeds in the thinner materials with significant improvements in the cut edge quality. Recently, ROFIN-SINAR introduced the next generation of Slab lasers equipped with an output window made out of diamond material and using only reflective optics, which further improves the reliability and reduces maintenance requirements.
In recent years, ROFIN-SINAR has widened the use of lasers into the consumer goods and aircraft industries.

High power laser welding began some 20 years ago as an alternative to the cumbersome, service-intensive electron beam welding used in the US automotive industry. The first successful applications were in the welding of automatic transmissions where the CO₂ lasers provided narrow welds with minimal part distortion, high strength, increased speed and easy automation. The laser welding process provided industry with significant technical and economical benefits in product design and fabrication. This initial start gave way to a variety of other welding applications in a wide range of markets such as tailor welded blanks for car body production, saw blades for cutting concrete, stainless steel tubes and heat exchangers.

The ROFIN-SINAR HF Series of CO₂ lasers is the latest in a new generation of highly reliable and compact industrial lasers for welding and surface treatment. The high frequency discharge between two water-cooled dielectric coated electrodes minimizes maintenance and increases optics life. Whereas CO₂ lasers require reflective optics to direct the laser beam to the workpiece, Nd:YAG lasers have the advantage of delivering the beam through fiber optics. The laser beam can travel several tens of meters without substantial power loss. A unique low-loss fiber delivery design provides for maximum power delivered to the workpiece, excellent beam accuracy and stability. Built for rugged industrial environments, Nd:YAG lasers are an ideal tool for three-dimensional welding tasks and can be used effectively in combination with robots. Nd:YAG lasers are cost effective solutions for many applications, especially within the automotive body and component manufacturing areas. Typical output power ranges from 50 Watts to 2.5 kW. The lasers can also be used for spot or seam welding of smaller components where minimal heat distortion is a requirement.

ROFIN-SINAR has been present in Japan since 1982. In 1985, ROFIN-Marubeni was founded as a Joint Venture with Marubeni and Nippei Toyama to manufacture lasers for the local machine tool industry. Besides the growing number of CO₂ lasers being used for cutting, ROFIN-SINAR has experienced an increase in demand for high power Nd:YAG lasers for welding applications.
CO₂ lasers used for welding typically range in size from 1.2kW to 8kW. High frequency cross flow lasers, which are compact and have low maintenance requirements are commonly used for welding depths in the 3 to 6 mm range and for applications such as welding tubes or tailored blanks where high throughput is required. The HF lasers, with powers up to 8kW, are manufactured at ROFIN-SINAR in Plymouth, Michigan.

Welding

Richard Walker, General Manager, ROFIN-SINAR, Inc. "1997 was a year of significant investment and growth in both product range and support for the North American market."

The Plymouth facility, with 58 thousand square feet of manufacturing floor and over 100 employees, handles sales, service and applications support for the North American market.

Reiji Takahashi, President, Rofin-Marubeni Laser Corporation. The Atsugi-shi facility, with 11 thousand square feet of manufacturing floor space and over 20 employees, assembles CO₂ lasers and handles sales and service support for Japan.

In addition, ROFIN-SINAR has subsidiaries in Italy and France, sales offices in the UK, Belgium, Hong Kong and Korea, plus a worldwide service and support network.
ROFIN-SINAR is focused on developing marking applications using Nd: YAG lasers that may be q-switched, providing high pulsing frequencies and peak powers. Laser marking provides a technique for permanent marking on a virtually unlimited variety of materials and applications from calipers, integrated circuits and keyboards to credit cards and drill bits.

Dr. Walter Volkmar, General Manager, Laser Marking Division “We more than doubled our production in the last three years.”

The company is also continuously developing new lasers and marking software to find the optimum solution for even the most sophisticated customer demands and applications. Recently, **ROFIN-SINAR** introduced the S-Line - a low cost laser marking system. The S-Line includes a laser with output power of 75 Watts and is ideally suited for most applications where low capital investment and running costs are critical.

With the successful introduction of the newly developed diode-pumped Nd:YAG laser, **ROFIN-SINAR** has demonstrated that it is clearly at the forefront of the laser marking industry. The Günding, Germany facility, with 41 thousand square feet of manufacturing floor space and over 130 employees, handles research, development, sales and service for all **ROFIN-SINAR** laser marking products. **ROFIN-SINAR** recently opened an office in Tempe, Arizona, specifically devoted to servicing the North American laser marking market and in close proximity to the semiconductor industry, a large market for the marking business.
With the successful introduction of the newly developed diode-pumped Nd:YAG laser, ROFIN-SINAR has demonstrated that it is clearly at the forefront of the laser marking industry.
In 1997, ROFIN-SINAR acquired 80% of the stock in DILAS Diodenlaser GmbH. DILAS, located in Mainz, Germany, manufactures high power diode laser components and systems.

DILAS was the first company to commercially deliver multi kilowatt diode laser systems for materials processing applications. It also provides diode lasers to the medical, research, inspection, measurement and printing markets.
Founded in 1994, DILAS is engaged in the assembly and packaging of laser diodes using a proprietary micro-channel cooling technique providing output powers up to 30 Watts per element. By stacking these elements, diode laser arrays can be formed, achieving output in the multi-kilowatt range. These stacks can be used for direct applications and for pumping solid state lasers. ROFIN-SINAR’s recently developed diode pumped marking laser utilizes the high performance DILAS pump modules.

The DILAS facility, with 6.5 thousand square feet of manufacturing floor space and 11 employees, plans to expand production capacities and manpower in the coming year to accommodate the increased demands for these products.

Low power diode lasers are commonly used in the optical storage and communications markets. DILAS provides the experience and expertise to develop much higher output powers from diodes without jeopardizing their lifetime or reliability. Direct diode applications for welding thin metal sheets or plastics, soldering and surface treatment are now possible. Diode lasers are extremely compact, show excellent power stability and are now offered in power ranges up to 4 kW.

With the acquisition, ROFIN-SINAR assumed responsibility for developing the materials processing market for the laser diodes in addition to new business areas.
ROFIN-SINAR’s dedication to customer satisfaction

Whether it is welding automatic transmissions in the US for the automotive industry, cutting sheet metal in a German job shop or marking integrated circuits at a Malaysian semiconductor manufacturer, ROFIN-SINAR’s industrial lasers are working around the clock and around the world in hundreds of different applications and markets.

Our customers demand continuous improvement and constant throughput and that is why they choose ROFIN-SINAR lasers. Manufacturing quality products with increased up-time starts in the research and development department and continues through production, sales, applications development, technical support and customer service.

The importance of a fast, reliable and dedicated service support team for lasers and equipment is reflected in our efforts in establishing a global network of field service engineers, bringing the support and service close to our customers. ROFIN-SINAR’s field service engineers are strategically located near our customers and are centrally dispatched to provide on-site support and emergency service 24 hours a day, 7 days a week. Special services, tailored to meet customer demands, are part of our ongoing efforts to improve customer satisfaction.
Our technical support engineers offer in-depth solutions and technical advice for all of ROFIN-SINAR’s laser products. They provide concise and knowledgeable answers in areas such as machine operation, maintenance procedures and more. If a problem arises with an application, whether it is for cutting, welding, surface treatment or marking, ROFIN-SINAR’s personnel is totally focused on providing fast and effective solutions.

Long ago we recognized that a better understanding of our laser products in industrial applications helps reduce downtime, so we established customer training centers in our facilities in Hamburg, Plymouth and Günding to meet the demands for information and expertise. The training seminars are organized specifically for customer operation, programming, maintenance and service.

Participants study in a classroom setting plus gain hands-on experience with the very latest laser technologies. Further, each training seminar is conducted by a laser specialist whose responsibility is to ensure that our customers have the knowledge and expertise to deliver optimum laser performance and productivity.

With sales offices in over 25 countries, customer service capabilities in 40 and application and training centers in 3, customer satisfaction is our primary goal.
Product overview

ROFIN-SINAR’s industrial lasers

Series

<table>
<thead>
<tr>
<th>CO₂ Laser</th>
<th>Nd:YAG Laser</th>
<th>Diode Laser</th>
<th>Marking Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROFIN SM</td>
<td>ROFIN P/ CW</td>
<td>ROFIN DL</td>
<td>ROFIN Power Line</td>
</tr>
<tr>
<td>700-2000 W</td>
<td>150-300 W</td>
<td>10-2000 W</td>
<td>25-130 W</td>
</tr>
<tr>
<td>ROFIN DC</td>
<td>ROFIN P</td>
<td>ROFIN S-Line</td>
<td>ROFIN S-Line</td>
</tr>
<tr>
<td>1000-2500 W</td>
<td>50-1000 W</td>
<td>75 W</td>
<td>75 W</td>
</tr>
<tr>
<td>ROFIN SR</td>
<td>ROFIN CW</td>
<td>ROFIN Diode Marker</td>
<td>ROFIN Diode Marker</td>
</tr>
<tr>
<td>12000-20000 W</td>
<td>1200-2500 W</td>
<td>3.50 W</td>
<td>3.50 W</td>
</tr>
<tr>
<td>ROFIN HF</td>
<td>ROFIN Spotwelder</td>
<td>ROFIN Combi Line</td>
<td>ROFIN Combi Line</td>
</tr>
<tr>
<td>4000-8000 W</td>
<td>50 W</td>
<td>- Marking System -</td>
<td>- Marking System -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Customized system for IC-Marking -</td>
<td>- Customized system for Label-Marking -</td>
</tr>
</tbody>
</table>

Marking products:
- ROFIN Power Line
- ROFIN S-Line
- ROFIN Diode Marker
- ROFIN Combi Line
- ROFIN IC Marker
- ROFIN Label Laser
- ROFIN Spotwelder
Our worldwide locations

ROFIN-SINAR Technologies, Inc.
45701 Mast Street
Plymouth, MI 48170, USA

Tel.: +1-734-455-5400
Fax: +1-734-455 2741

Headquarters

ROFIN-SINAR, Inc.
45701 Mast Street
Plymouth, MI 48170, USA

Tel.: +1-734-455-5400
Fax: +1-734-455 2741

ROFIN-SINAR Laser GmbH
Berzeliusstraße 83
D-22113 Hamburg, Germany

Tel.: +49-(0)-40 7 33 63 0
Fax: +49-(0)-40 7 33 63 100

Sales + Service Center

ROFIN-SINAR Laser GmbH
Berzeliusstraße 83
D-22113 Hamburg, Germany

Tel.: +49-(0)-40-7 33 63-0
Fax: +49-(0)-40-7 33 63 100

ROFIN-SINAR Laser GmbH
Via Galilei, 1
I-20090 Rovagno di Segrate (MI), Italy

Tel.: +39-(0)-2-269 20 446
Fax: +39-(0)-2-269 20 549

Production Sites/
Subsidiaries/Joint Ventures

ROFIN-SINAR Laser GmbH
Marking Division
Neufeldstraße 16/ Güding
D-85232 Bergkirchen
Germany

Tel.: +49-(0)-81 31 704 0
Fax: +49-(0)-81 31 704 100

ROFIN-SINAR Laser GmbH
Brussels Office
Rue Abbé Cuypers, 3
B-1040 Brussels
Belgium

Tel.: +32-(0)-2-74 12 427
Fax: +32-(0)-2-74 12 404

ROFIN-SINAR, Inc.
1515 West University Drive
Suite 105
Tempe, AZ 85281, USA

Tel.: +1-602-777-1199
Fax: +1-602-517 9684

ROFIN-SINAR Laser, Inc.
45701 Mast Street
Plymouth, MI 48170, USA

Tel.: +1-734-455-5400
Fax: +1-734-455 2741

ROFIN-MARUBENI Laser Corp.
Sun-Intelligent Building 4F
3162 Sakai, Atsugi-shi,
Kanagawa-ken, 243 Japan

Tel.: +81-(0)-462 29 8-655
Fax: +81-(0)-462 29 8 541

DILAS Diodenlaser GmbH
Galileo-Galilei-Straße 10
D-55129 Mainz-Hechtsheim,
Germany

Tel.: +49-(0)-6131-9226-0
Fax: +49-(0)-6131-9226 55

ROFIN-SINAR France S.A.
10, Allée du Cantal
Z.I. La Petite Montagne Sud
F-91018 Evry Cedex,
France

Tel.: +33-(0)-1-69 11 3636
Fax: +33-(0)-1-69 11 3639

ROFIN-SINAR Technologies, Inc.
Sun-Intelligent Building 4F
3162 Sakai, Atsugi-shi,
Kanagawa-ken, 243 Japan

Tel.: +81-(0)-462 29 8-655
Fax: +81-(0)-462 29 8 541

ROFIN-SINAR Technologies, Inc.
107-507, Kookje-Sanjang Apt.,
Shillim 10-Dong
Kwanak-Gu, Seoul,
Korea 151-020

Tel.: +82-2-8781061
Fax: +82-2-8781062

ROFIN-SINAR Technologies, Inc.
1515 West University Drive
Suite 105
Tempe, AZ 85281, USA

Tel.: +1-602-777-1199
Fax: +1-602-517 9684

ROFIN-SINAR Technologies, Inc.
19